Total Synthesis of Palau'amine

Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.; Baran, P. S. *Angew. Chem. Int. Ed.* **2009**, *early view*.

Chad Hopkins Wipf Group Literature Presentation 1-23-10

Chad Hopkins @ Wipf Group

Page 1 of 14

Stylotella aurantium

Isolation and Biological Activity

Meaning of Hawaiian word palau: war club

• Isolated in 1993 from the sea sponge *Stylotella agminata* collected from the Western Caroline Islands in the Republic of Palau

- Low acute toxicity (LD₅₀ 13mg/kg, mice)
- Significant immunosuppressive and antitumor activities (IC₅₀'s for P-388 and A-549 were 0.1 and 0.2 μ g/mL, respectively)
- Displays antifungal and antibacterial activities
- Authors note that the dust from the sponge caused allergic reactions consisting of *severe* shortness of breath lasting for about 4 h and skin rashes.

Kinnel, R. B.; Gehrken, H.-P.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115, 3376.

Kinnel, R. B.; Gehrken, H.-P.; Swali, R.; Skoropowski, G.; Scheuer, P. J. *J. Org. Chem.* **1998**, **6**3,9928 of 14 1/27/2010

original structure

(incorrect)

- Unusually high nitrogen content (N/C ~ 1 : 2)
- Highly strained core with 8 contiguous stereocenters
- High polarity translates into difficulty in performing manipulations (solubility, purifications, etc.)
- pH stability (decomposes under basic conditions above pH 6.5)
- Absolute stereochemistry is unknown

Structure revision:

Grube, A.; Kock, M. Angew. Chem. Int. Ed. 2007, 46, 2320.

Buchanan, M. S.; Carroll, A. R.; Quinn, R. J. Tetrahedron Lett. 2007, 48, 4573.

Kobayashi, H.; Kitamura, K.; Nagai, K.; Nakao, Y.; Fusetani, N.; van Soest, W. M.; Matsunaga, S. *Tetrahedron Lett.* **2007**, 48, 2127. 2127.

Synthetic Challenges

A Formidable Opponent..... Synthetic Publications: 34 PhD. Dissertations: 26

Total Synthesis: 1 (title paper)

revised structure

(correct)

Hypothetical Biosynthesis

Proline

Mourabit, A. A.; Potier, P. Eur. J. Org. Chem. 2001, 237.

Andrade, P.; Willoughby, R.; Pomponi, S. A.; Kerr, R. G. *Tetrahedron Lett.* **1999**, *40*, 4775. Page 4 of 14 1/27/2010

Oroidin-Derived Alkaloids

Figure blatantly stolen from:

Du, H.; He, Y.; Sivappa, R.; Lovely, C. J. *Synlett* **2006**, 965. Chad Hopkins @ Wipf Group Page 5 of 14

Disclaimer: Relative stereochemistry unrevised

1/27/2010

Wang, S.; Dilley, A. S.; Poullenec, K. G.; Romo, D. Tetrahedron 2006, 62, 7155.

Dransfield, P.O. King, Wigf, Wigf, Wally, S.; Romo, D. Tetrahedron 2006, 9223; Zancanella, M. A.; Romo, D. Org. Lett. 2008, 10, 3685.2010

Highlights of Selected Previous Efforts Towards Palau'amine (Overman)

^{1/27/2010}

Synthesis of Functionalized Cyclopentane Core

Chad Hopkins @ Wipf Group

Su, S.; Seiple, I. B.; Young, I. S.; Baran, P. S. *J. Am. Chem. Soc.* **2008**, *130*, 16490. Page 8 of 14 1/27/2010

Seiplehad Blogskin S@ Woinfigrous: Lewis, C. A.; Yamaguchi, P.a geavarf, 14. S. Angew. Chem. Int. Ed. 2009, Early View. 1/27/2010

Completion of Racemic Palau'amine

The following was taken from the SI:

- Attempted purification of intermediates (*in the above sequence*) led to a reduced yield of 'final product' due to their extreme polarity leading to difficulty in separation
- Purification of 'final product' had to be performed twice on two columns (*RP HPLC*) in 5-8 batches each

Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.; Baran, P. S. Angew. Chem. Int. Ed. 2009, Early View.

....what was the inspiration for the trans-annular cyclization? Page 10 of 14

Chad Hopkins @ Wipf Group

Position	Natural (Quinn) ^a	Natural (Scheuer) ^b	Synthetic
3	6.89 (dd, 3.9, 1.6)	6.85 (dd, 3.9, 1.5)	6.89 (dd, 3.9, 1.5)
4	6.39 (dd, 3.9, 2.8)	6.35 (dd, 3.9, 2.8)	6.38 (dd, 3.9, 2.8)
5	7.03 (dd, 2.8, 1.6)	6.99 (dd, 2.8, 1.5)	7.02 (dd, 2.7, 1.6)
6	6.37 (s)	6.33 (s)	6.37 (s)
7 (N)			
8-NH ₂			
9			
11	3.11 (d, 13.8)	3.08 (dd, 14.1)	3.11 (d, 14.1)
12	2.50 (m)	2.52 (dddd)	2.50 (m)
13	3.97 (dd, 10.2, 7.2)α	3.96 (dd, 10.4, 7.3)α	3.97 (dd, 10.4, 7.0)α
	3.31 (t, 10.2)β	3.28 (dd, 10.3, 10.4)β	3.31 (t, 10.2)β
17	4.34 (d, 7.8)	4.35 (d, 7.9)	4.35 (d, 7.8)
18	2.48 (m)	2.47 (dddd)	2.48 (m)
19	3.32 (dd, 13.2, 6.6)α	3.32 (dd, 13.2, 7.0)α	3.32 (dd, 13.3, 6.5)α
	3.27 (dd, 13.2, 6.6)β	3.24 (dd, 13.2, 7.0)β	3.26 (dd, 13.3, 6.5)β
20	5.98 (s)	5.96 (s)	5.98 (s)
20-OH			
21 (N)			
22-NH ₂			
23 (N)			
24 (N)			

Spectroscopic Comparison (¹H NMR)

Buchanan, M. S.; Carroll, A. R.; Quinn, R. J. Tetrahedron Lett. 2007, 48, 4573.

Kinnel, R. B.; Gehrken, H.-P.; Scheuer, P. J. *J. Am. Chem. Soc.* **1993**, *115*, 3376. Chad Hopkins @ Wipf Group

Spectroscopic Comparison (¹³C NMR)

Position	Natural (Quinn) ^a	Natural (Scheuer) ^{b,c}	Synthetic
2	122.5	122.5	122.5
3	115.7	115.6	115.7
4	113.9	113.8	113.9
5	125.2	125.2	125.2
6	69.0	69.0	69.0
8	157.8	157.8° (159.6) ^b	157.8
10	80.7	80.8	80.8
11	56.3	56.3	56.3
12	41.8	41.8	41.9
13	46.0	46.1	46.1
15	159.5	159.5° (157.8) ^b	159.6
16	72.0	72.1	72.1
17	74.0	74.0	74.1
18	48.6	48.6	48.6
19	41.8	41.9	41.9
20	83.7	83.7	83.8
22	157.9	157.9	157.8

Buchanan, M. S.; Carroll, A. R.; Quinn, R. J. Tetrahedron Lett. 2007, 48, 4573.

Kinnel, R. B.; Gehrken, H.-P.; Scheuer, P. J. *J. Am. Chem. Soc.* **1993**, *115*, 3376. Page 12 of 14

Inspiration for "Macro-Palau'amine"?

Seiple, I. B.; Su, S.; Young, I. S.; Lewis, C. A.; Yamaguchi, J.; Baran, P. S. Angew. Chem. Int. Ed. 2009, Early View.

Sharma, G. M. *Drugs, Food, Sea, Myth, Reality* [*Intl. Symp. Proc.*] **1978**, 203. Nakadai, M.; Harran, P. G. *Tetrahedron Lett.* **2006**, *47*, 3933.

"...exemplifies the innovative retrosynthetic analysis and mechanistic thinking that underpins the Baran group's remarkable string of total synthesis..." - *C&EN*, **2010**, *88*(2), 5.

"...the macro-intermediate is just off the charts, and alone places Baran in rarified territory. It is not just non-obvious, it is totally counter intuitive on many levels..." –
Chad Mopkins@Wipf\Grduptic.com, blogpost, Jan. 2;age10 of 14

1/27/2010

Summary

- First synthesis of Palau'amine completed over 16 years after initial isolation
- Minimal protecting group operations
- Functionalized cyclopentane core prepared using strategic Diels-Alder, intramolecular aldol, and tandem oxidation/spirocyclization reactions
- Late stage chemoselective Ag(II)-picolinate oxidation installs key hemiaminal
- Uncatalyzed coupling of pyrrole surrogate gives access to pyrrole acid intermediate
- Intriguing trans-annular cyclization establishes elusive *trans*-5,5 ring core and completes the synthesis
- According to Baran, an enantioselective, scalable variant is coming soon......please stay tuned.

Chad Hopkins @ Wipf Group

Page 14 of 14